Home Дела домашние Масса луны, вес и другие интересные факты. Луна – характеристика и описание планеты Чему равна масса луны

Масса луны, вес и другие интересные факты. Луна – характеристика и описание планеты Чему равна масса луны

by admin

Космическое тело. Это единственный естественный спутник Земли. Орбита Луны – эллиптическая, и расстояние между Луной и Землей колеблется, в среднем оно составляет 382 тысячи километров.

Форма Луны – практически шар, слегка вытянутый в сторону (из-за приливных сил).

Радиус Луны – 1737 километров, это приблизительно 0,27 экваториального радиуса Земли.

Масса Луны в 81 раз меньше массы Земли.

Поверхность Луны – сочетание равнин, которые называют лунными морями, кольцеобразных хребтов, окружающих эти равнины, многочисленных кратеров чашевидной формы и трещин. Глубина отдельных кратеров достигает 200 километров. Моря, хребты, кратеры нанесены на составленную карту Луны, им присвоены названия, например: Апеннины, Кавказ, Альпы, Океан Бурь, Море Кризисов, горы Коперник, Кеплер и так далее. Карта обратной стороны Луны составлена по данным запущенных к ней с искусственных спутников и зондов.

Грунт Луны – так называемый реголит, образовавшийся от бесчисленных метеоритных столкновений. Он характеризуется как “разнозернистый обломочно-пылевой слой толщиной от нескольких метров до нескольких десятков метров”. В состав лунных пород входят многие элементы таблицы Менделеева.

Ускорение силы тяжести на поверхности Луны равно 1,6 метра в секунду за секунду, это в 6 раз меньше, чем на . Вследствие малого притяжения Луна не может удерживать вокруг себя газовую оболочку, и атмосфера у Луны отсутствует. Отсутствует и гидросфера.

Температура на поверхности Луны , не защищенной атмосферой, колеблется от плюс 110 градусов Цельсия днем до минус 120 градусов ночью.

Луна движется вокруг Земли, одновременно вращаясь вокруг оси. Период обращения Луны вокруг и период вращения Луны вокруг своей оси совпадают, он равен приблизительно 27 суткам. Из-за этого совпадения земляне видят только одну сторону Луны.

Луна – не самосветящаяся планета, и она видна нам благодаря освещению ее солнечными лучами. Если видна полностью вся поверхность обращенной к нам части Луны, то эта фаза Луны называется полнолунием. Когда освещает только невидимую нам сторону Луны, это называется новолунием. После новолуния, через один-два дня, нам становится виден узкий серпик Луны, затем серпик увеличивается, то есть Луна, говорим мы, “растет”. В это время, кроме освещенного серпика, мы видим как бы “в тумане” и остальную часть Луны, так как тоже освещает Луну, очень слабо, но освещает. Это так называемый пепельный свет Луны – свет, отраженный Луной от Земли. Промежуток между двумя последовательными новолуниями (так называемый лунный месяц) равен 29 суткам. Так как фазы Луны – новолуние, первая четверть, полнолуние и последняя четверть легко наблюдаются любым жителем Земли, то это явление послужило основой для составления различных систем календарей.

Луна – участница лунных и солнечных затмений. освещает Луну и , а Луна и Земля отбрасывают тени. Если Луна, и Земля в какой-то момент становятся в один “ряд”, то происходит какое-либо из двух затмений: лунное или солнечное.

Тень Земли, падающая на Луну и делающая Луну полностью невидимой с Земли, вызывает полное Лунное затмение .

Тень Луны , падающая на Землю и полностью заслоняющая , создает полное солнечное затмение.

Продолжительность полного солнечного затмения – 7,5–12 минут; полного лунного – до 1 часа 45 минут.

Чаще происходят не полные, а частные затмения, когда часть Луны или нам, землянам, всё-таки видна.

Солнечные затмения бывают только во время новолуний, а лунные – во время полнолуний.

Каждый год происходит 2–5 солнечных и не более трех лунных затмений. То есть затмения происходят чаще, чем затмения Луны, но это в целом для . А в частности картина такая. Лунные затмения видны на всем полушарии, обращенном в это время к Луне. Солнечные же затмения видны не со всех точек Земли, а только с той территории, на которую падает тень Луны. Подсчитано, что с одного и того же места Земли полное солнечное затмение может быть видно только один раз в 300–400 лет.

И лунные, и солнечные затмения всегда производили большое впечатление на жителей , каждое явление отражалось в летописях и других документах. Сопоставление этих записей с датами происходивших в прошлом затмений (а затмения имеют свою закономерность, и все даты затмений учеными вычислены) позволяет историкам, археологам, астрономам и многим другим специалистам восстановить даты событий, произошедших в далеком прошлом.

Луна – космический объект, за которым постоянно ведутся наблюдения учеными различных профилей с помощью телескопов и запускаемых космических аппаратов. 3 апреля 1966 года автоматическая межпланетная станция (АМС) “Луна-10” стала первым искусственным спутником Луны. 21 июля 1969 года Луну впервые посетили люди – американские космонавты (астронавты) Н. Армстронг и Э. Олдрин, прилетевшие на космическом корабле “Аполлон-11”. В ноябре 1970 года на Луну был доставлен первый лунный самоходный аппарат – “Луноход-1”. В феврале 1972 года земляне получили образец лунного грунта.

Луна считается покровителем – одного из .

История оценки массы Луны насчитывает уже сотни лет. Ретроспектива этого процесса изложена в статье зарубежного автора Дэвида У. Хьюза. Перевод этой статьи сделан по мере скромных моих познаний в английском и представлен ниже. Ньютон оценил массу Луны значением вдвое большим принятого ныне за правдоподобное. Правда у каждого своя, а истина одна. Точку в этом вопросе могли бы поставить американцы с маятником на поверхности Луны. Они ведь там были😉 . То же могли сделать телеметристы по орбитальным характеристикам LRO и прочих ИСЛ. Жаль, что эта информация пока недоступна.

Измерение массы Луны

Обзор к 125-летию Обсерватории

Кафедра физики и астрономии, Университет Шеффилда

Первая оценка лунной массы была сделана Исааком Ньютоном. Значение этой величины (массы), а также плотность Луны, с тех пор были предметом обсуждения.

Масса является одной из наиболее неудобных для измерения величин в астрономическом контексте. Обычно мы измеряем силу воздействия неизвестной массы на известную массу, или наоборот. В истории астрономии не было концепции “масс”, скажем, Луны, Земли, и Солнца (M M , М E , М C) до времени Исаака Ньютона (1642 – 1727). После Ньютона, утвердились достаточно точные соотношения масс. Так, например, в первом издании Начал (1687) дано отношение М C /М Е =28700, которое затем увеличивается до М C /М Е =227512 и М C /М Е =169282 во втором (1713) и третьем (1726) изданиях, соответственно, в связи с уточнением астрономической единицы. Эти отношения подчеркнули тот факт, что Солнце было важнее, чем Земля, и оказали значительную поддержку гелиоцентрической гипотезе Коперника .

Данные по плотности (масса/объем) тела помогает оценить его химический состав. Греки более 2200 лет назад получили достаточно точные значения для размеров и объемов Земли и Луны, но массы была неизвестны, а плотности не могли быть рассчитаны. Таким образом, даже при том, что Луна была похожа на сферу из камня, это не могло быть научно подтверждено. Кроме того, не могли быть предприняты первые научные шаги к выяснению происхождения Луны.

Безусловно, лучший метод определения массы планеты сегодня, в космическую эру, опирается на третий (гармонический) закон Кеплера . Если спутник массой m , вращается вокруг Луны массой М M , то

где а это усредненное по времени среднее расстояние между M M и m , G постоянная тяготения Ньютона, и P – период орбиты. Поскольку М M >>m , это уравнение дает значение M M непосредственно.

Если астронавт может измерять ускорение силы тяжести, G M на поверхности Луны, то

где R M – лунный радиус, параметр, который измерял с разумной точностью еще Аристарх Самосский , около 2290 лет назад.

Исаак Ньютон 1 не измерял массу Луны непосредственно, но попытался оценить соотношение между солнечной и лунной массой с использованием измерения морских приливов. Даже при том, что многие люди до Ньютона предполагали, что приливы были связаны с положением и влиянием Луны, Ньютон был первым, кто взглянул на предмет с точки зрения гравитации. Он понял, что приливная сила, создаваемая телом массы М на расстоянии d пропорциональна M/ d 3 . Если это тело имеет диаметр D и плотность ρ , эта сила пропорциональна ρ D 3 / d 3 . И если угловой размер тела, α , мал, приливное сила пропорциональна ρα 3 . Так приливообразующая сила Солнца чуть меньше половины лунной.

Осложнения возникли потому, что наибольший прилив был отмечен, когда Солнце было на самом деле в 18.5° от сизигии, а также потому, что лунная орбита не лежит в плоскости эклиптики и имеет эксцентриситет. Принимая все это во внимание, Ньютон на основе своих наблюдений, что “До устья реки Эйвон, в трех милях ниже Бристоля, высота подъема воды в весенних и осенних сизигиях светил (по наблюдениям Samuel Sturmy) составляет около 45 футов, но в квадратурах только 25”, сделал вывод, “что плотность вещества Луны к плотности вещества Земли относится как 4891 к 4000, или как 11 к 9. Следовательно вещество Луны более плотное и более земляное, чем сама Земля”, и “масса вещества Луны будет в массе вещества Земли как 1 в 39.788” (Начала, Книга 3, Предложение 37, Проблема 18).

Поскольку нынешнее значение для соотношения между массой Земли и массы Луны задается как М Е /M M = 81.300588, ясно, что у Ньютона что-то пошло не так. К тому же значение 3.0 несколько более реалистично, чем 9/5 для отношения высот сизигийного? и квадратурного прилива. Также неточное значение Ньютона для массы Солнца было серьезной проблемой. Обратите внимание, что Ньютон имел очень мало статистической точности, и указание им пяти значащих цифр в значении M E /M M является полностью необоснованным.

Пьер-Симон Лаплас (1749 – 1827) посвятил значительное время для анализа высот приливов (особенно в Бресте), концентрируясь на приливах на четырех основных фазах Луны на обоих солнцестояниях и равноденствиях. Лаплас 2 , используя короткие серии наблюдений 18-го века, получил M E /M M значение 59. К 1797 году он уточнил это значение до 58.7. Используя расширенный набор приливных данных в 1825 году, Лаплас 3 получил M E /M M = 75.

Лаплас понял, что приливный подход был одним из многих способов выяснения лунной массы. Тот факт, что вращение Земли осложняет приливные модели, и что конечный продукт расчета был отношение масс Луна / Солнце, явно беспокоило его. Поэтому он сравнил свою приливную силу с результатами измерений, полученными другими методами. Лаплас 4 записывает в дальнейшем коэффициенты М Е /M M , как 69.2 (с использованием коэффициентов Даламбера), 71.0 (с использованием анализа Маскелина нутации Брэдли и наблюдений параллакса), и 74.2 (с использованием работы Бурга о лунном параллактическом неравенстве). Лаплас, по-видимому, рассматривал каждый результат в равной степени достойным доверия и просто осреднял четыре значения для получения среднего. “La valeur le plus vraisembable de la masse de la lune, qui me parait resulted des divers phenomenes 1/68.5” (ref 4, с. 160). Среднее соотношение М Е /M M равное 68.5 неоднократно встречается у Лапласа 5 .

Вполне понятно, что к началу девятнадцатого века, должны были возникнуть сомнения относительно ньютоновского значения 39.788, особенно в умах некоторых британских астрономов, которые были в курсе работ своих французских коллег.

Финлейсон 6 вернулся к приливной методике и при использовании измерения сизигийного? и квадратурного приливов в Дувре за годы 1861, 1864, 1865, и 1866, он получил следующие значения М Е /M M: 89.870, 88.243, 87.943, и 86.000, соответственно. Феррелом 7 извлечены главные гармоники из девятнадцатилетних приливных данных в Бресте (1812 – 1830) и получено значительно меньшее соотношение М Е / М M = 78. Харкнесс 8 приводит приливное значение М Е /M М = 78.65.

Так называемый маятниковый метод основан на измерении ускорения от силы тяжести. Возвращаясь к третьему закону Кеплера, с учетом второго закона Ньютона получим

где a М – усредненное по времени расстояние между Землей и Луной, P M – лунный сидерический период обращения (т.е. длина звездного месяца), g Е ускорение силы тяжести на поверхности Земли, и R Е – радиус Земли. Так

Согласно Барлоу и Брайан 9 , эта формула была использована Эйри 10 для измерения М Е /M М, но была неточна в силу малости этой величины и аккумулировала – накопившуюся неопределенность в значениях величин a М , g Е , R Е, и P M .

Когда телескопы стали более совершенными и точность астрономических наблюдений повысилась, стало возможным решить лунное уравнение более точно. Общий центр масс системы Земля /Луна движется вокруг Солнца по эллиптической орбите. И Земля, и Луна вращаются вокруг этого центра масс каждый месяц.

Наблюдатели на Земле, таким образом, видят на протяжении каждого месяца, небольшое смещение на восток и затем небольшое смещение на запад небесной позиции объекта, по сравнению с координатами объекта, которые он имел бы в отсутствии у Земли массивного спутника. Даже с современными инструментами это движение не обнаруживается в случае звезд. Оно может, однако, быть легко измерено для Солнца, Марса, Венеры и астероидов, которые проходят неподалеку, (Эрос, например, в его ближайшей точке находится всего в 60 раз дальше, чем Луна). Амплитуда месячного смещения позиции Солнца составляет около 6,3 секунды дуги. Таким образом

где a C – среднее расстояние между Землей и центром масс системы Земля-Луна (это около 4634 км), и a S – среднее расстояние между Землей и Солнцем. Если среднее расстояние Земля-Луна a M также известно, то

К сожалению, постоянная этого “лунного уравнения”, т.е. 6,3″, это очень маленький угол, который крайне трудно точно измерить. К тому же М Е /М M зависит от точного знания расстояния Земля-Солнце.

Значение лунного уравнения может быть в несколько раз больше для астероида, который проходит близко с Землей. Гилл 11 использовал 1888 и 1889 позиционных наблюдения астероида 12 Виктория и солнечного параллакса на 8.802″ ± 0.005″ и пришел к выводу, что М Е /М M =81.702±0.094. Хинкс 12 использовал длинную последовательность наблюдений астероида 433 Эрос и пришел к выводу, что М Е /М M =81.53±0.047. Затем он использовал обновленное значение солнечного параллакса и исправленные значения для астероида 12 Виктория, сделанные Дэвидом Гиллом и получил исправленное значение М Е /М M =81.76±0.12.

Используя этот подход, Ньюкомб 13 , из наблюдений Солнца и планет, получил М Е /М M =81.48±0.20.

Спенсер Джон с 14 проанализировал наблюдения за астероидом 433 Эрос, когда он проходил в 26 х 10 6 км от Земли в 1931 году. Главной задачей было измерение солнечного параллакса, и комиссия Международного астрономического союза была создана в 1928 году с этой целью. Спенсер Джонс обнаружил, что постоянная лунного уравнения равна 6.4390± 0.0015секунды дуги. Это, в сочетании с новым значением для солнечного параллакса, привело к отношению М Е /М M =81.271±0.021.

Прецессия и нутация также могут быть использованы. Полюс оси вращения Земли прецессирует вокруг полюса эклиптики каждые 26 000 лет или около того, что также проявляется в движения первой точки Овна вдоль эклиптики примерно на 50.2619″ в год. . Прецессия была обнаружена Гиппархом более 2000 лет назад. На это движение накладывается более быстрое, небольшое периодическое движение, известное как нутация, обнаруженная Джеймсом Брэдли (1693 ~ 1762) в 1748 году. Нутация в основном происходит, потому что плоскость лунной орбиты не совпадает с плоскостью эклиптики. Максимальная нутация составляет около 9.23″ и полный цикл занимает около 18.6 лет. Существует также дополнительные нутации производимые Солнцем. Все эти эффекты обусловлены моментами сил, действующими на экваториальные вздутия Земли.

Величина установившейся лунно-солнечной прецессии по долготе, и амплитуды различных периодических нутаций по долготе, являются функциями, среди прочего, массы Луны. Стоун 15 отметил, что лунно-солнечная прецессия, L, и постоянная нутации, N, даны так:

где ε=(М M /М S) (a S /a M) 3 , a S и a M среднее расстояние Земля-Солнце и Земля-Луна;

e E и e M – эксцентриситеты земной и лунной орбиты, соответственно. Постоянная Делоне представлена как γ. В первом приближении γ есть синус половины угла наклона лунной орбиты к эклиптике. Величина ν это смещение узла лунной орбиты,

в течение Юлианского года, по отношению к линии равноденствий; χ является постоянной, которая зависит от средней возмущающей силы Солнца, момента инерции Земли, и угловой скорости Земли по своей орбите. Обратите внимание, что χ сокращается, если L делится на Н. Стоун подставляя L = 50.378″ и N = 9.223″ получил М Е /М M = 81.36. Ньюкомб использовал свои собственные измерения L и N и нашел М Е /М M = 81.62 ± 0.20. Проктор 16 нашел, что М Е /М M = 80.75.

Движение Луны вокруг Земли было бы точно по эллипсу, если бы Луна и Земля были единственными телами в Солнечной системе. Тот факт, что они таковыми не являются приводит к лунному параллактическому неравенству. В связи с привлечением других тел в Солнечной системе, и Солнца, в частности, орбита Луны чрезвычайно сложна . Три крупнейших неравенства, которые должны быть применены обусловлены эвекцией, вариацией, и годовым уравнением. В контексте настоящей работы вариация является наиболее важным неравенством. (Исторически Седиллот говорит, что лунная вариация была обнаружена Абул-Вафа в 9-м веке; другие приписывают это открытие Тихо Браге).

Лунная вариация вызвана изменением, которое происходит от различия солнечного притяжения в системе Земля-Луна на протяжении синодического месяца. Этот эффект равнен нулю, когда расстояния от Земли до Солнца и Луны до Солнца равны, в ситуации, возникающей очень близко к первой и последней четверти. Между первой четверти (через полнолуние) и последней четвертью, когда Земля находится ближе к Солнцу, чем Луна, и Земля преимущественно оттягивается от Луны. Между последней четвертью (через новолуние) и первой четвертью, Луна находится ближе к Солнцу, чем Земля, и поэтому Луна преимущественно оттягивается от Земли. Полученная остаточная сила может быть разложена на две составляющие, одна касательная к лунной орбите, а другая перпендикулярная к орбите (т.е., в направлении Луна-Земля).

Положение Луны меняется на целых ± 124.97 угловые секунды (согласно Брауэр и Клементс 17) по отношению к позиции, которую она имела бы, если бы Солнце было бесконечно далеко. Именно эти 124.9″, известны как параллактическое неравенство.

Поскольку эти 124.97 угловые секунды соответствуют четырем минутам времени, то следует ожидать, что эта величина может быть измерена с достаточной точностью. Наиболее очевидное следствие параллактического неравенства в том, что интервал между новолунием и первой четвертью составляет около восьми минут, т.е. дольше, чем от этой же фазы до полнолуния. К сожалению, точность, с которой эта величина может быть измерена несколько уменьшилась по причине, что лунная поверхность неровная и что различные лунные края должны быть использованы для измерения лунной позиции в различных частях орбиты. (Вдобавок к этому есть также небольшое периодическое изменение в видимом полудиаметре Луны в связи с меняющимся контрастом между яркостью края Луны и неба. Это вносит погрешность, которая изменяется между ± 0.2″ и 2″, см. Кэмпбелл и Нейсон 18).

Рой 19 отмечает, что лунное параллактическое неравенство, P, определяется как

По словам Кэмпбелла и Нейсона 18, параллактическое неравенство было установлено как 123.5″ в 1812 году, 122.37″ в 1854 году, 126.46″ в 1854 году, 124.70″ в 1859 году, 125.36″ в 1867 году, и 125.46″ в 1868 году. Таким образом, отношение массы Земли / Луна может быть рассчитано по наблюдениям параллактическим неравенства, если других величин, и особенно солнечного параллакса (т.е. a S ), известны. Это привело к дихотомии среди астрономов. Некоторые предполагают, используя массовое соотношение Земля/Луна из параллактического неравенства, оценить среднее расстояние Земля-Солнце. Другие предполагают через последнее оценить первое (см Moulton 20).

Наконец рассмотрим возмущение планетных орбит. Орбиты наших ближайших соседей, Марса и Венеры, которые испытывают гравитационное влияние системы Земля-Луна. В связи с этим действием, орбитальные параметры, такие как эксцентриситет, долгота узла, наклонение, и аргумент перигелия изменяются как функция времени. Точное измерение этих изменений может быть использовано для оценки общей массы системы Земля / Луна, и вычитанием, массы Луны.

Это предложение было впервые сделано Леверье (см. Янг 21). Он подчеркнул тот факт, что движения узлов и перигелиев, хотя и медленные, но непрерывные, и, таким образом, будут известны со все большей точностью с течением времени. Леверье загорелся этой идеей так, что отказался от наблюдений тогдашнего транзита Венеры, будучи убежден, что солнечный параллакс и отношение масс Солнце/Земля в конечном итоге будет найдено гораздо точнее методом возмущений.

Самая ранняя точка происходит от Начала Ньютона.

Точность известной лунной массы.

Методы измерения можно разделить на две категории. Приливная техника требуется особое оборудование. Вертикальный шест с градуировкой теряется в прибрежной грязи. К сожалению, сложность приливной обстановки вокруг берегов и заливов Европы означала, что полученные значения лунного массы были далеки от точной. Приливная сила, с которой тела взаимодействуют пропорциональна их массе, деленной на куб расстояния. Так следует помнить, что конечный продукт расчета на самом деле соотношение между лунной и солнечной массой. И соотношение между расстояниями до Луны и Солнца должно быть точно известно. Типичные приливные значения М Е /M М равны 40 (в 1687 году), 59 (в 1790 году), 75 (в 1825 году), 88 (в 1865 году), и 78 (в 1874 году), подчеркивают трудность, присущую интерпретации данных.

Все остальные методы опирались на точные телескопические наблюдений астрономических позиций. Детальные наблюдения звезд в течение длительных периодов времени привели к получению констант прецессии и нутации оси вращения Земли. Они могут быть интерпретированы в терминах соотношения между лунными и солнечными массами. Точные позиционные наблюдения Солнца, планет и некоторых астероидов, за несколько месяцев, привели к оценке расстоянии Земли от центра масс системы Земля-Луна. Тщательные наблюдения положения Луны в зависимости от времени в течение месяца привели к амплитуде параллактического неравенства. Последние два метода, вместе, опираясь на измерения радиуса Земли, длины звездного месяца, и ускорения силы тяжести на поверхности Земли, привели к оценке величины , а не массы Луны непосредственно. Очевидно, что если известно лишь с точностью до ± 1%, масса Луны является неопределенной. Чтобы получить соотношение М М /М E точностью скажем, 1, 0,1, 0,01% требуется величину измерить с точностью ± 0.012, 0.0012, и 0.00012 %, соответственно.

Оглядываясь на исторический период с 1680 до 2000, можно видеть, что лунная масса была известна ± 50% между 1687 и 1755, ± 10% между 1755 и 1830, ± 3% между 1830 и 1900, ± 0.15 % между 1900 и 1968, и ± 0.0001% между 1968 и по настоящее время. Между 1900 и 1968 два значения были распространены в серьезной литературе. Лунный теория указала, что M E /M M = 81.53, и лунное уравнение и лунной параллактическое неравенство дало несколько меньшую величину M E /M M = 81.45 (см. Гарнетт и Вулли 22). Другие значения цитировались исследователями, которые использовали иные значения солнечного параллакса в соответствующих уравнениях. Эта незначительная путаница была удалена когда легкий орбитальный аппарат и командный модуль летали по хорошо известным и точно-измеренным орбитам вокруг Луны в эпоху Apollo. Нынешний значение M E /M M = 81.300588 (см. Зейдельман 23), является одной из наиболее точно известных астрономических величин. Наше точное знание фактической лунной массы омрачено неопределенностью в постоянной тяготения Ньютона, G.

Важность лунной массы в астрономической теории

Исаак Ньютон 1 сделал очень мало с его новообретенным лунным знанием. Даже при том, что он был первым ученым, измерившим лунную массу, его М Е /М M = 39.788, казалось бы, заслужили немного современных комментариев. Тот факт, что ответ был слишком мал, почти в два раза, не был реализован в течение более шестидесяти лет. Физически значим только вывод, который Ньютон извлек из ρ M /ρ E =11/9, состоящий в том, что “тело Луны плотнее и более земное, чем у нашей земли” (Начала, книга 3, предложение 17, следствие 3).

К счастью, этот увлекательный, хотя ошибочный, вывод не приведет добросовестных космогонистов в тупик в попытке объяснить его значение. Примерно в 1830 году стало ясно, что ρ M /ρ E было 0.6 и М Е /М M было между 80 и 90. Грант 24 отметил, что “это точка, в которой большая точность не взывала к существующим основам науки”, намекая, что точность здесь неважна просто потому, что ни астрономическая теория, ни теория происхождения Луны, не полагались сильно на эти данные. Агнес Клерк 25 был более осторожен, отметив, что “лунно-земная система. была особым исключением среди тел находящихся под влиянием Солнца.”

Луна (масса 7,35-10 25 г) является пятым в Солнечной системе спутником из десятки (начиная с номера один, это Ганимед, Титан, Каллисто, Ио, Луна, Europa, Кольца Сатурна, Тритон, Титания, и Рея). Актуальный в 16ом и 17ом веках Парадокс Коперника (тот факт, что Луна вращается вокруг Земли, тогда как Меркурий, Венера, Земля, Марс, Юпитер и Сатурн вращается вокруг Солнца) давно забыт. Большой космогонический и селенологический интерес представляло отношение масс “главный / наиболее массивный-вторичный”. Вот список Плутон / Харон, Земля / Луна, Сатурн / Титан, Нептун / Тритон, Юпитер / Каллисто и Уран / Титания, коэффициенты, такие 8.3, 81.3, 4240, 4760, 12800 и 24600, соответственно. Это первое, что указывает на возможное совместное их происхождения по бифуркации путем конденсации жидкости тела (см, например, Дарвин 26, Джинс 27, и Биндер 28). На самом деле, необычное отношение масс Земля / Луна привело Вуд 29 к выводу, что “указывает достаточно четко, что событие или процесс, который создал земную Луну был необычным, и предполагает, что некоторое ослабление нормального отвращение к привлечению специальных обстоятельств, может быть допустимо в этой проблеме”.

Селенология, изучение происхождения Луны, стала «научной» с открытия в 1610 году – Галилеем спутников Юпитера. Луна потеряла свой ​​уникальный статус. Тогда Эдмонд Галлей 30 обнаружил, что лунный орбитальный период меняется со временем. Это было не так, однако, до работы Г.Х. Дарвина в конце 1870-х, когда стало ясно, что первоначально Земля и Луна были гораздо ближе друг к другу. Дарвин предположил, что резонансно-индуцированная бифуркация вначале, быстрое вращение и конденсация расплавленной Земли привели к образованию Луны (см Дарвин 26). Осмонд Фишер 31 и В.Х. Пикеринг 32 даже зашел так далеко, что предположил, что бассейн Тихого океана это шрам, который остался, когда Луна откололась от Земли.

Вторым крупным селенологическим фактом было отношение масс Земля/Луна. То, что имелось нарушение значений для дарвиновских тезисов было отмечено А.М. Ляпуновым и Ф.Р. Мултоном (см., например, Moulton 33). . Вместе с низким комбинированным угловым моментом системы Земля-Луна, это привело к медленной гибели дарвиновской теории приливов. Затем было предложено, что Луна была просто сформирована в другом месте в Солнечной системе, а затем захвачена в некий сложный процесс трех тел (см., например. Си 34).

Третьим основным фактом была лунная плотность. Ньютоново значение ρ M /ρ E 1.223 стал 0.61 к 1800г., 0.57 к 1850г., и 0.56 к 1880 (см. Браш 35). На заре девятнадцатого века стало ясно, что Луна имеет плотность, которая была около 3.4 г см -3. В конце ХХ века это значение почти не изменилось, и составило 3.3437±0.0016г см -3 (см. Хаббард 36). Очевидно, что лунный состав отличался от состава Земли. Эта плотность сходна с плотностью пород на небольшой глубине в мантии Земли и предполагает, что дарвиновская бифуркация произошла в гетерогенной, а не в однородной Земле, в то время, которое наступило после дифференцировки и основного формообразования. Недавно это сходство было одним из основных фактов, способствующих популярности таранной гипотезы лунного образования.

Было отмечено, что средняя плотность Луны была такой же, как у метеоритов (и, возможно астероидов). Гуллемин 37 указал плотность Луны в 3.55 раза больше, чем у воды. Он отметил, что “так любопытно было узнать значения 3.57 и 3.54 плотности для некоторых метеоритов, собранных после того, как они попадают на поверхность Земли”. Нэсмит и Карпентер 38 отметили, что “удельный вес лунного вещества (3.4) мы можем заметить, это примерно то же самое, что у кремния стекла или алмаза: и как ни странно это почти совпадает с метеоритами, что время от времени мы находим лежащими на земле; следовательно подтверждается теория, что эти тела были изначально фрагментами лунного вещества, и, вероятно, выбрасывались некогда из лунных вулканов с такой силой, что попадали в сферу земного притяжения, и в конечном счете, падали на земную поверхность “.

Юри 39, 40 использовал этот факт, чтобы поддержать свою теорию захвата лунного происхождения, хотя он беспокоился о разнице между лунной плотностью и плотностью определенных хондритовых метеоритов, и других планет земной группы. Эпик 41 счел эти различия несущественными.

Масса Луны чрезвычайно нехарактерна. Она слишком велика, чтобы разместить наш спутник комфортно среди групп планетарных захваченных астероидов, как Фобос и Деймос вокруг Марса, групп Гималия и Ананке вокруг Юпитера, и групп Япет и Фиби вокруг Сатурна. Тот факт, что эта масса 1.23% Земли, к сожалению, только незначительная подсказка среди многих в поддержку предлагаемого механизма воздействия-происхождения. К сожалению, сегодняшняя популярная теория типа “тело размером с Марс попадает в недавно дифференцированную Землю и выбивает массу материала” имеет некоторые мелочные проблемы. Даже при том, что этот процесс был признан возможным, это не гарантирует, что он является вероятным. Такие вопросы, как “почему только одна Луна сформировалась в то время?”, “почему другие Луны не образуются в другое время?”, “почему этот механизм сработал на планете Земля, и не коснулся наших соседей Венеры, Марса, и Меркурия?” приходят на ум.

Масса Луны слишком мала, чтобы поместить ее в тот же разряд, что Харон Плутона. 8.3/1 Соотношение между массами Плутона и Харона, коэффициент, который указывает, что пара этих тел образована бифуркацией конденсации, вращением почти жидкого тела, и отстоит очень далеко от значения 81.3/1 отношения массы Земли и Луны.

Мы знаем лунную массу с точностью до одной части от 10 9 . Но не можем избавиться от ощущения, что общий ответ на эту точностью “и что”. В качестве ориентира, или подсказки о происхождении нашего небесного напарника этого знания мало. На самом деле, в одном из последних 555-страничных томов на эту тему 42 , индекс даже не включает “лунную массу” в виде записи!

(1) I. Newton, Principia, 1687. Here we are using Sir Isaac Newton”s Mathematical Principles of Natural Philosophy, translated into English by Andrew Motte in 1729; the translation revised and supplied with an historical and explanatory appendix by Florian Cajori, Volume 2: The System of the World (University of California Press, Berkeley and Los Angeles>, 1962.

(2) P.-S. Laplace, Mem. Acad, des Sciences, 45, 1790.

(3) P.-S. Laplace, Tome 5, Livre 13 (Bachelier, Paris), 1825.

(4) P.-S. Laplace, Traite de Mechanique Celeste, Tome 3 (rimprimerie de Crapelet, Paris), 1802, p, 156.

(5) P.-S. Laplace, Traite de Mechanique Celeste, Tome 4 (Courcicr, Paris), 1805, p. 346.

(6) H. P. Finlayson, MNRAS, 27, 271, 1867.

(7) W. E, Fcrrel, Tidal Researches. Appendix to Coast Survey Report for 1873 (Washington, D. C) 1874.

(8) W. Harkness, Washington Observatory Observations, 1885? Appendix 5, 1891,

(9) C. W. C. Barlow Sc G. H, Bryan, Elementary Mathematical Astronomy (University Tutorial Press, London) 1914, p. 357.

(10) G. B. Airy, Mem. RAS., 17, 21, 1849.

(11) D. Gill, Annals of the Cape Observatory, 6, 12, 1897.

(12) A. R. Hinks, MNRAS, 70, 63, 1909.

(13) S. Ncwcomb, Supplement to the American Ephemeris for tSy? (Washington, D. C), 1895, p. 189.

(14) H. Spencer Jones, MNRAS, 10], 356, 1941.

(15) E. J. Stone, MNRAS, 27, 241, 1867.

(16) R. A. Proctor, Old and Nets Astronomy (Longmans, Green, and Co., London), >